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Determination of sensitive and specific markers of very early AD progression is

intended to aid researchers and clinicians to develop new treatments and monitor

their effectiveness, as well as to lessen the time and cost of clinical trials. Magnetic

Resonance (MR)-related biomarkers have been recently identified by the use of machine

learning methods for the in vivo differential diagnosis of AD. However, the vast majority

of neuroimaging papers investigating this topic are focused on the difference between

AD and patients with mild cognitive impairment (MCI), not considering the impact of

MCI patients who will (MCIc) or not convert (MCInc) to AD. Morphological T1-weighted

MRIs of 137 AD, 76 MCIc, 134 MCInc, and 162 healthy controls (CN) selected

from the Alzheimer’s disease neuroimaging initiative (ADNI) cohort, were used by an

optimizedmachine learning algorithm. Voxels influencing the classification between these

AD-related pre-clinical phases involved hippocampus, entorhinal cortex, basal ganglia,

gyrus rectus, precuneus, and cerebellum, all critical regions known to be strongly involved

in the pathophysiological mechanisms of AD. Classification accuracy was 76% AD vs.

CN, 72% MCIc vs. CN, 66% MCIc vs. MCInc (nested 20-fold cross validation). Our data

encourage the application of computer-based diagnosis in clinical practice of AD opening

new prospective in the early management of AD patients.

Keywords: Alzheimer’s disease, mild cognitive impairment, magnetic resonance imaging, support vector machine,

structural neuroimaging biomarkers, machine learning, automatic classification, artificial intelligence

Introduction

The increase in life expectancy and the prevalence of age-related cognitive disorders have led
to great interest in studying normal and pathological aging with the aim to individuate early
predictors of degenerative disorders, differential diagnosis, and efficacies of pharmacological and
cognitive approaches in the treatment of these disorders. Indeed, considering the great burden of
degenerative diseases on national healthcare systems in terms of cost and therapies, research aimed
at improving the early and differential diagnosis of these pathologies is mandatory.
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Alzheimer’s Disease (AD) is the first most common
neurodegenerative disease affecting millions of people
worldwide (Martin et al., 2012). Determination of sensitive
and specific markers of very early AD progression is intended
to aid researchers and clinicians to develop new treatments
and monitor their effectiveness, as well as to lessen the time
and cost of clinical trials. To date, individual diagnosis of
AD is predominantly based on the clinical examination and
neuropsychological assessment (Knopman et al., 2001; Blennow
et al., 2006), but definite diagnosis can only be performed by
post-mortem analysis.

In the 1980s, the National Institute of Neurologic and
Communicative Disorders and Stroke and the Alzheimer’s
Disease and Related Disorders Association (NINCDS-ADRDA)
developed clinical diagnostic criteria for AD by applying a
binary approach to diagnosis. According to this approach, a
cognitive impairment is necessary for the diagnosis of AD,
with definite, probable and possible categories (McKhann et al.,
1984). Neuropathological data based on senile plaques and
neurofibrillary tangles were afterwards introduced (Hyman and
Trojanowski, 1997).

In 2011, revised diagnostic criteria for AD have been
developed by the National Institute on Aging-Alzheimer’s
Association workgroup. These revised diagnostic criteria have
replaced the binary approach for a more biological definition
of AD: additional supportive features can be obtained by
neurogenetic testing, measurement of cerebrospinal fluid
(CSF), amyloid and tau, and by neuronal injury biomarkers
as measured by neuroimaging studies, including Positron
Emission Tomography (PET) and Magnetic Resonance Imaging
(MRI). PET and MR changes provide measurements of
metabolism/amyloid markers (Fox and Schott, 2004; Jagust
et al., 2006) and of atrophic regions, respectively, in order to
identify AD, even before dementia is apparent (Albert et al.,
2011; Sperling et al., 2011).

Due to the non- invasiveness of MR modality, a considerable
effort has been put into the development of advanced MR
image processing techniques in order to identify MR-related
biomarkers which could be used for enhancing the accuracy
of clinical diagnosis of AD. Most studies which were focused
on the identification of MR image differences between patients
with a clinical diagnosis of AD and healthy subjects were based
on a priori-defined regions of interest or on mass univariate
image analysis methods (e.g., Voxel BasedMorphometry, Busatto
et al., 2003; Karas et al., 2003; Ishii et al., 2005). However, both
approaches are not able to detect spatially distributed pattern of
brain anatomy.

In order to overcome these limitations, in the last few years,
there has been a growing interest within the neuroimaging
community toward alternative approaches to the analyses
of neuroimaging data by considering multivariate pattern
analysis, including machine-learning algorithms. Due to their
multivariate properties, machine-learning techniques are able
to automatically extract multiple information from image sets
without requiring a priori hypotheses of where this information
may be coded in the images. Several studies have assessed the
diagnostic value of these techniques in the classification of AD

by cerebral MRI studies (Davatzikos et al., 2008; Klöppel et al.,
2008; Gerardin et al., 2009; Cuingnet et al., 2011; Hidalgo-Muñoz
et al., 2014), showing promising results also for the prediction
of conversion in the early stages of disease (Tufail et al., 2012;
Moradi et al., 2015). Among these studies, Klöppel et al. (2008)
used machine learning classification and structural MR images
for the extraction of spatially-distributed multivariate diagnostic
biomarkers. Specifically, the authors were able to identify MR-
related biomarkers useful for the differential diagnosis of ADwith
respect to Fronto-Temporal Lobar Degeneration and normality.

However, early diagnosis of AD by structural MR imaging
studies is currently an open challenge due to the difficulty of
quantifying patterns of structural change during early stages
of AD or during clinically normal stages (Davatzikos et al.,
2008). Patients suffering from AD at a prodromal stage are
often clinically classified as Mild Cognitive Impairment (MCI),
but not all MCI patients convert into AD. A meta-analysis of
research and clinical reports suggests that the rate of conversion
of MCI to AD is around 5–10% per year (Mitchell and Shiri-
Feshki, 2009). Criteria forMCI have been developed (Albert et al.,
2011) and various forms have been described (Petersen et al.,
1999). Detecting the transition from the asymptomatic phase
to symptomatic pre-dementia phase or from the symptomatic
pre-dementia phase to dementia onset in the clinical setting is
a non-trivial issue (Albert et al., 2011). This causes a diagnostic
uncertainty for the early stage of disease.

For this objective, it seems crucial to identify multivariateMR-
related diagnostic biomarkers that are able to accurately diagnose
MCI converter (MCIc) and MCI non converter (MCInc) with
respect to AD and normality. Therefore, different morphological
characteristics between normal aging and MCI may be identified
by a specific and sensitive analysis of MR images, by revealing
which are the most informative image features supporting an
early diagnosis (Davatzikos et al., 2008).

In this work we propose a machine learning method able to
extract spatially distributed multivariate diagnostic biomarkers
from structural MR brain images to be used for the early
and accurate diagnosis of AD. In particular, our method is
able to identify MRI-related biomarkers of MCI subjects which
will convert into AD, opening new prospective in the early
management of AD patients.

Materials and Methods

Participants
Subjects included in this study were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). We enrolled 162 cognitively normal elderly
controls (CN), 137 patients with diagnosis of AD, 76 patients
with diagnosis of MCI who converted to AD within 18 months
(MCIc) and 134 patients with diagnosis of MCI who did not
convert to AD within 18 months (MCInc). MCI patients who
had been followed less than 18 months were not considered.
Demographic and clinical data (sex, age and mini-mental score)
for each group are shown in Table 1 (see http://adni.loni.usc.
edu/study-design/background-rationale/ for further description
of groups). A total of 509 subjects from 41 different radiology
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TABLE 1 | Demographic and clinical data for the considered groups of participants.

Group type # Subjects Age Gender MMSE score # Centers

mean ± std [range] # Males/# Females mean ± std [range]

CN 162 76.3 ± 5.4 [60–90] 76 M/86 F 29.2 ± 1.0 [25–30] 40

MCInc 134 74.5 ± 7.2 [58–88] 84 M/50 F 27.2 ± 1.7 [24–30] 36

MCIc 76 74.8 ± 7.4 [55–88] 43 M/33 F 26.5 ± 1.9 [23–30] 30

AD 137 76.0 ±7.3 [55–91] 67 M/70 F 23.2 ± 2.0 [18–27] 39

centers were considered. Identification Numbers (IDs) of each
subject involved in this study are reported in Supplementary
Tables S1–S4. The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies and
non-profit organizations, as a $60 million, 5-year public private
partnership. The primary goal of ADNI has been to test whether
serial MR, PET, other biological markers, and clinical and
neuropsychological assessment can be combined to measure the
progression of MCI and early AD.

According to the ADNI inclusion criteria, enrolled subjects
were all between 55 and 90 years of age and spoke either
English or Spanish. Each subject was willing, able to perform
all test procedures described in the protocol and had a study
partner able to provide an independent evaluation of functioning.
Inclusion criteria for CN were: Mini Mental State Examination
(MMSE) scores between 24 and 30; Clinical Dementia Rating
(CDR) (Morris, 1993) of zero; absence of depression, MCI
and dementia. Inclusion criteria for MCI were: MMSE scores
between 24 and 30; CDR of 0.5; objective memory loss,
measured by education adjusted scores on Wechsler Memory
Scale Logical Memory II (Wechsler, 1987), absence of significant
levels of impairment in other cognitive domains; absence
of dementia. Inclusion criteria for AD were: MMSE scores
between 20 and 26; CDR of 0.5 or 1.0; NINCDS/ADRDA
criteria for probable AD (McKhann et al., 1984; Dubois et al.,
2007). Detailed description of inclusion/exclusion criteria can
be found in the ADNI protocol (http://www.adni-info.org/
Scientists/ADNIStudyProcedures.aspx).

MR Images
T1-weighted structural MR images of all selected subjects
were obtained from the ADNI dataset. In order to allow
standardization of images from different sites and platforms, we
only used images which had undergone: (1) geometry correction
for gradient nonlinearity, by 3D gradwarp correction (Jovicich
et al., 2006); and (2) intensity correction for non-uniformity,
by B1 non-uniformity correction (Narayana et al., 1988). T1-
weighted structural MR images of each subject were acquired
according to the ADNI acquisition protocol (Jack et al., 2008).
MR imaging examinations were performed at 1.5 T. Scans from
the baseline visit (when available) or from the screening visit.
According to the ADNI protocol, MR imaging examination
was performed twice per visit. Scans were then rated by the
ADNI investigators of the ADNI MR imaging quality control

center at the Mayo Clinic on the basis of blurring/ghosting,
flow artifact, intensity, and homogeneity, signal-to-noise ratio
(SNR), susceptibility artifacts, and gray-white/cerebrospinal fluid
contrast (Jack et al., 2008). In this work, we used the image which
was rated as the best quality scan for each subject. 3D MR images
were downloaded from the ADNI dataset in 3D NIfTI format.

A pre-processing procedure, which mainly aimed at the
spatial normalization of all MR images by co-registration to a
standard template was applied. All pre-processing procedures
were applied to MR images by means of the VBM8 software
package (Ashburner and Friston, 2000). First steps of pre-
processing consisted in: (1) image re-orientation; (2) cropping;
(3) skull-stripping; (4) image normalization to MNI standard
space, which was performed by co-registration to the MNI
template (MNI152 T1 1mm brain) (Grabner et al., 2006;
O’Hanlon et al., 2013). After co-registration to theMNI template,
MR images had a size of 121 × 145 × 121 voxels. Each image
was then segmented into Gray Matter (GM) and White Matter
(WM) tissue probability maps. Resulting images (whole-brain,
GM andWM) were smoothed using an isotropic Gaussian kernel
with Full Width at Half Maximum (FWHM) ranging from 2 to
12mm3 (step: 2mm3).

The Classifier
In order to classify the different groups of subjects by means
of their T1-weighted structural (whole-brain, GM and WM) we
used a machine learning classifier previously implemented by
our group (Salvatore et al., 2014). The whole process consists
of 2 steps: (1) feature extraction and selection from the MR
images of the subjects, which aimed at the selection of the most
discriminative features by Principal Components Analysis (PCA)
coupled with a Fisher Discriminant Ratio (FDR) criterion (López
et al., 2011), and (2) single-subject classification, which aimed at
the classification of the subjects on the basis of a predictive model
generated for the separation of the different subject groups by
means of the most discriminative features (Klöppel et al., 2008;
Salvatore et al., 2014).

Feature Extraction and Selection

In order to identify the most discriminative features among
groups, an automatic feature extraction technique was applied
to MR images (whole-brain, GM and WM). This technique
also allowed to reduce the number of features to be handled
without losing relevant information for discrimination, and thus
to enhance computational performances of the machine learning
algorithm.
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PCA was implemented to perform feature extraction (Habeck
et al., 2008; López et al., 2011). This technique is based
on two consecutive steps: (1) application of an orthogonal
transformation to a dataset of (possibly) correlated variables; this
operation results in a set of values of orthogonal (uncorrelated)
variables, which are referred to as Principal Components of the
original dataset and which define the so-called PCA subspace; (2)
projection of each variable of the original dataset onto the PCA
subspace; this operation results in the reduction of the original
set of observed variables into a smaller set of features, which
are referred to as PCA coefficients and which can be used in
subsequent analyses. The total number of PCA coefficients is
equal to the number of Principal Components extracted from the
original dataset.

Mathematically, if we consider a dataset A composed of S
samples, with each sample being a collection of N variables,
then the dimension of the dataset is S × N. By computing
the eigenvectors of the covariance matrix of the dataset A,
PCA subspace can be defined as the space spanned by these
eigenvectors. Application of PCA to the dataset A results in a
number of Principal Components (i.e., of eigenvectors) with non-
zero eigenvalues which is at most equal to the value of the smaller
dimension of the dataset–1. Principal Components are sorted
in descending order according to the proportion of variance
explained, with the constraint for them to be orthogonal with
each other.

In this study, datasets were composed of S samples (MR
images), where the dimension N of each pre-processedMR image
was 121 × 145 × 121 voxels. Application of PCA to our datasets
resulted in a number of Principal Components with non-zero
eigenvalues which was at most equal to the number S of samples
in each dataset–1. The dimension of each dataset after application
of PCA was S× (S – 1).

PCA coefficients resulting from the feature extraction process
were then sorted in a descending order according to their FDR,
which gives information about the class discriminatory power of
a given component. For each component, FDR can be calculated
as follows:

FDR =
(µ1 − µ2)

2

σ 2
1 + σ 2

2

(1)

where µi and σ 2
i are the mean and the variance of the ith class,

respectively.
The explained variance was studied as a function of the

number of considered principal components before and after
sorting them in accordance to their FDR, in order to show the
impact of FDR-analysis on PCA coefficients.

Classification

The classification algorithm of the proposed machine learning
method was based on Support Vector Machines (SVM)
(Schölkopf and Smola, 2002). The aim of SVM is to find
a predictive model which is able to perform binary group
separation. This predictive model is represented by a hyper-plane
which can be computed using a set of data input to SVM for its
training (training data). The set of training data consists of: (1)
a vector of samples belonging to two different classes and (2) the

corresponding vector of labels (two labels, each label identifies
one class). SVM is able to compute a predictive model for the
classification of a new sample to one or to the other of the two
classes. Specifically, the predicted class y for the sample x is given
by the following relation:

y(x) =
N

∑

n=1

wn · tn · k(x, xn)+ b (2)

where N is the number of samples included in the training
set; wn is a weight assigned by SVM to each sample n in the
training set during the training phase; tn is the label of the
sample n of the training set; k(x, xn) is a kernel function; b is
a threshold parameter. The main difference among SVM and
other classification methods is that the hyper-plane computed by
SVM is the one which maximizes the separation between the two
classes.

In this work, we used the Matlab platform to both implement
and optimize the SVM classifier. We used a linear kernel for all
analyses. Our code also included algorithms of the biolearning
toolbox of Matlab.

Optimization of Classification and Evaluation of
Accuracy
An optimization was performed with the purpose of finding the
best parameter configuration for the classification of the different
groups of subjects. A Nested Cross Validation (Nested CV) was
used. In this approach, the original dataset is split into k subsets
of (possibly) equal size. An inner training-and-validation loop
for parameter estimation and optimization is performed using k-
1 subsets, and an outer test loop for performance evaluation is
performed using the kth held-out subset. This procedure is then
repeated k times, until all k subsets are used once for performance
evaluation.

In this study, we performed nested 20-fold CV using 19/20
of the original data for the inner training and validation loop
allowing parameter estimation and optimization. For each inner
loop, these 19/20 subsets were randomly split in half in order
to perform training and validation on two independent datasets.
The trained and optimized model and parameter set were then
used to predict the held-out 1/20 subset.

For each round, the optimal parameters (which brain tissue,
which level of filtering, how many PCA coefficients) were chosen
as those for which the classification error (E) was minimized.
Specifically, we aimed at minimizing the quantity given by,

E = 1 − Balanced Accuracy (3)

Balanced Accuracy =
1

2

(

Specificity+ Sensitivity
)

(4)

as a function of the following parameters: (1) tissue map (whole-
brain, GM and WM); (2) smoothing (FWHM = 2, 4, 6, 8, 10,
12mm3, or no smoothing); (3) number of PCA coefficients (from
1 to PC, where PC is the total number of extracted coefficients).

For each of the 20 separate rounds of the outer loop, Balanced
Accuracy was calculated and results were averaged across all 20
rounds (Overall Balanced Accuracy).
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Parameter optimization and accuracy evaluation were
performed for the three following comparisons: (1) AD vs. CN,
(2) MCIc vs. CN, and (3) MCIc vs. MCInc.

It is worth noting that pre-processing, feature extraction and
feature selection steps were performed separately on the datasets
used in the inner training-and-validation loop and in the outer
test loop, in order to avoid over-fitting problems (Kuncheva,
2004).

Diagnostic MR-related Biomarkers
Extraction of MR-related biomarkers was carried out according
to the following procedure. For each round of the inner
training-and-validation loop, maps of voxel-based pattern
distribution of MR image differences among groups of subjects
were generated for the optimized configuration (minimum E),
thus obtaining 20 maps. These maps were averaged in order to
obtain the final map. This procedure was applied to the three
following comparisons: (1) AD vs. CN, (2) MCIc vs. CN, and (3)
MCIc vs. MCInc.

The importance of each considered sample for the
classification was computed on the basis of the predictive
model generated by our SVM (Klöppel et al., 2008; Focke et al.,
2011; Salvatore et al., 2014). As specified in Equation (2), the
weight wn, assigned by the SVM to the sample n during the
training phase of the classification, indicates the importance of
that sample for the computation of the separating hyper-plane
and, thus, indicates the importance of that sample for the
separation of the two considered groups. It is worth noting that
the weight wn assigned by SVM to the sample n is non-zero
only for support vectors, being respectively positive or negative
depending on the class to which the sample n belongs. Each
sample n of the training set was multiplied by the corresponding
assigned weight wn. Resulting weighted samples were added
in order to generate a vector representing the weight of each
feature for the classification. In order to ensure the correct
interpretation of weights assigned by SVM, we then applied
the method proposed by Haufe and colleagues to compute
activation patterns for backward models as described in Haufe
et al. (2014). The computed pattern was finally transformed back
from the PCA space to the MR-images space, resulting in a map
of voxel-based pattern distribution of MR image differences
among groups.

Voxel-based pattern distribution (normalized to a range
between 0 and 1) was represented by a proper color scale
and superimposed on a standard stereotactic brain for spatial
localization. In this way, MR-related diagnostic biomarkers for
the diagnosis of AD (AD vs. CN) and for the early diagnosis of
AD (MCIc vs. CN, and MCIc vs. MCInc) were identified.

Results

Participants
Groups of participants did not show significant differences
for age (Student’s t-test with significance level at 0.05) and
gender (Pearson’s chi-square test with significance level at 0.05).
Significant differences for MMSE scores were found between CN
and patients (AD, MCIc) (Student’s t-test with p < 0.0001),

consistently with previous studies considering the same groups
of ADNI subjects (Cuingnet et al., 2011).

MR Images
Co-registration of all MRI images to the MNI template and
segmentation into GM and WM tissue probability maps were
performed correctly. Figure 1 shows results of these procedures
for a representative MR image of a MCIc patient. Sagittal view
of the original volume (A), the slice co-registered to the MNI
space (B), the GM tissue probability map (C) and the WM tissue
probability map (D) are shown.

The Classifier
Feature Extraction and Selection

Figure 2 shows a representative example of PCA coefficients
resulting from the feature extraction and selection obtained
from the comparison between AD and CN. 1st, 2nd, and 3rd
components are shown when using GM tissue probability map
and an isotropic Gaussian kernel with 10mm3 FWHM for
smoothing. The number of the extracted PC was 141.

Figures 3, 4 show, as representative examples, the explained
variance as a function of the number of considered PCs, before
(Figure 3) and after (Figure 4) sorting them in accordance
to their FDR. Plots are shown for the comparisons between
AD and CN, MCIc, and CN, MCIc, and MCInc when using
GM tissue probability maps and no smoothing. The trend of
explained variance as a function of the number of considered PCs
was modified by the application of FDR-analysis. In particular,
FDR-analysis allowed the most discriminative information for
class separation to be contained in the first few principal
components. This is shown by the step in the explained variance
in correspondence with a low number of components for the
comparisons between AD vs. CN and MCIc vs. CN (Figure 4).

FIGURE 1 | Sagittal image of a MR scan from a MCIc patient:

(A) original image; (B) same slice, deskulled and co-registered to the

MNI space; same slice, segmented into Gray Matter (GM) (C) and into

White Matter (WM) (D).
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Classification

In Figure 5, a representative example of the hyper-plane
separating AD from CN subjects is shown when using 3 PCA
coefficients, GM tissue probabilitymap and an isotropic Gaussian
kernel with 10mm3 FWHM for smoothing. The number of
subjects involved was 142 (67 AD, 75 CN) and the total number
of extracted PCA coefficients was 141.

Optimization of Classification and Evaluation of
Accuracy
Figures 6–8 show E (1 – Balanced Accuracy) as a function
of applied smoothing (FWHM – mm3) and number of PCA
coefficients when using GM tissue probability maps. Plots are
shown for the comparisons between AD and CN, MCIc, and CN,
MCIc, and MCInc.

Optimal parameters resulting from classifier optimization are
reported in Table 2. For all the comparisons, minimum values
of E were obtained mostly when using GM tissue probability

FIGURE 2 | PCA coefficients for the comparison between AD (o

symbol) and CN (× symbol) when using GM tissue probability map and

an isotropic Gaussian kernel with 10mm3 FWHM for smoothing. 1st,

2nd, and 3rd components are shown.

FIGURE 3 | Explained Variance as a function of the number of

considered Principal Components, when using GM tissue probability

map and no smoothing, for the following comparisons: AD vs. CN,

MCIc vs. CN, MCIc vs. MCInc.

maps (frequency of 100% for AD vs. CN, 85% for MCIc vs. CN,
80% for MCIc vs. MCInc). For the comparison between AD and
CN, the best set of optimal parameters among the 20 rounds
was: GM tissue probability map; 10mm3 FWHM of the isotropic
Gaussian kernel for smoothing; 127 PCA coefficients. When
using these parameters, E reached its minimum value of 0.08. For
the comparison between MCIc and CN, the best set of optimal
parameters among the 20 rounds was: GM tissue probabilitymap;
6mm3 FWHM of the isotropic Gaussian kernel for smoothing;
67 PCA coefficients. When using these parameters, E reached
its minimum value of 0.14. For the comparison between MCIc
and MCInc, the best set of optimal parameters among the 20
rounds was: GM tissue probability map; 2mm3 FWHM of the
isotropic Gaussian kernel for smoothing; 34 PCA coefficients.
When using these parameters, E reached its minimum value
of 0.27.

FIGURE 4 | Explained Variance as a function of the number of

considered principal components sorted in accordance to their FDR,

when using GM tissue probability map and no smoothing, for the

following comparisons: AD vs. CN, MCIc vs. CN, MCIc vs. MCInc.

FIGURE 5 | Hyper-plane plane separating AD (o symbol) from CN

(× symbol) PCA coefficients (3 PCA coefficients), and defined

Support Vectors (2 symbol), when using GM tissue probability

map and an isotropic Gaussian kernel with 10mm3 FWHM for

smoothing. 1st, 2nd, and 3rd components are shown.
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FIGURE 6 | E (1 – Balanced Accuracy) as a function of smoothing (FWHM – mm3) and number of PCA coefficients for the comparison between AD and

CN when using GM.

FIGURE 7 | E (1 – Balanced Accuracy) as a function of smoothing (FWHM – mm3) and number of PCA coefficients for the comparison between MCIc

and CN when using GM.

FIGURE 8 | E (1 – Balanced Accuracy) as a function of smoothing (FWHM – mm3) and number of PCA coefficients for the comparison between MCIc

and MCInc when using GM.
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TABLE 2 | Classification error and optimal parameters (Tissue map,

Smoothing, Number of PCA coefficients) for each of the 20 rounds of the

inner training-and-validation loop (best configuration in bold).

Comparison E Tissue

map

Smoothing

FWHM [mm3]

PCA

coefficients

AD vs. CN 0.10

0.08

0.12

0.11

0.11

0.15

0.13

0.12

0.12

0.11

0.12

0.09

0.13

0.12

0.12

0.13

0.12

0.15

0.11

0.12

GM

GM

GM

GM

GM

GM

GM

GM

GM

GM

GM

GM

GM

GM

GM

GM

GM

GM

GM

GM

6

10

10

4

6

2

8

4

2

2

4

4

8

2

4

2

2

6

6

12

6

127

41

62

75

64

69

32

67

50

48

54

35

118

46

22

135

49

54

30

MCIc vs. CN 0.19

0.17

0.20

0.19

0.22

0.20

0.15

0.15

0.21

0.19

0.14

0.19

0.19

0.17

0.22

0.18

0.19

0.19

0.19

0.19

GM

GM

GM

GM

WB

WB

GM

GM

GM

GM

GM

GM

WB

GM

GM

GM

GM

GM

GM

GM

8

2

2

4

2

10

4

10

10

10

6

4

6

10

8

12

12

10

8

8

26

25

94

53

14

57

62

22

75

32

67

13

64

80

28

21

16

81

76

101

MCIc vs. MCInc 0.30

0.31

0.33

0.34

0.32

0.30

0.33

0.28

0.27

0.31

0.31

0.32

0.32

0.30

0.34

0.33

0.32

0.28

0.30

0.30

GM

GM

WB

GM

GM

GM

WB

GM

GM

WM

GM

GM

GM

GM

GM

GM

WB

GM

GM

GM

2

10

12

4

8

6

2

6

2

4

2

8

8

4

8

8

4

10

8

2

9

19

34

34

16

17

21

10

34

4

16

31

23

46

33

2

34

5

8

84

FIGURE 9 | Explained Variance, when using the best set of optimal

parameters, as a function of the number of considered principal

components sorted in accordance to their FDR, for the following

comparisons: AD vs. CN, MCIc vs. CN, MCIc vs. MCInc.

The operational time required by the whole pre-processing
and training of the classifier (including feature extraction and
selection) using the best set of optimal parameters, as measured
by the tic and toc functions implemented in Matlab (version
R2015a) and running on a system with 32 CPUs at 2.00 GHz,
was 31.7s for the comparison between AD and CN, 21.7s
for the comparison between MCIc and CN and 21.2s for the
comparison between MCIc and MCInc. The testing phase,
including preprocessing and classification of the new dataset,
took 1.5s per subject on average.

The Overall Balanced Accuracy (averaged across all 20
rounds) was 0.76 ± 0.11 for the classification of AD vs. CN,
0.72 ± 0.12 for the classification of MCIc vs. CN, 0.66 ± 0.16
for the classification of MCIc vs. MCInc, respectively.

Since MMSE resulted significantly different between CN and
patients (AD, MCIc), we have also tested our classification
algorithm after incorporating MMSE as additional feature.
Balanced Accuracy resulted to be affected (from 0.76 ± 0.11 to
0.99 ± 0.03 for AD vs. CN, from 0.72 ± 0.12 to 0.78 ± 0.16
for MCIc vs. CN, from 0.66 ± 0.16 to 0.60 ± 0.17 for MCIc vs.
MCInc).

Figure 9 shows the explained variance as a function of
the number of considered PC sorted in accordance to their
FDR. Plots are shown for the comparisons between AD and
CN, MCIc and CN, MCIc and MCInc when using the best
configuration highlighted in Table 2. For AD vs. CN comparison,
the percentage of variance explained by the first 127 components
was 98%; forMCIc vs. CN comparison, the percentage of variance
explained by the first 67 components was 74%; for MCIc vs.
MCInc comparison, the percentage of variance explained by the
first 34 components was 50%.

Diagnostic MR-related Biomarkers
Figures 10–12 show voxel-based pattern distribution maps for
the three following classification: (1) AD vs. CN, (2) MCIc vs.
CN, (3) MCIc vs. MCInc. The pattern of differences (normalized
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FIGURE 10 | Voxel-based pattern distribution map (axial view) for the classification between AD and CN. Voxel-based pattern distribution (normalized to a

range between 0 and 1) is expressed according to the color scale (threshold = 50%) and superimposed on a standard stereotactic brain for spatial localization.

FIGURE 11 | Voxel-based pattern distribution map (axial view) for the classification between MCIc and CN. Voxel-based pattern distribution (normalized to

a range between 0 and 1) is expressed according to the color scale (threshold = 45%) and superimposed on a standard stereotactic brain for spatial localization.
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FIGURE 12 | Voxel-based pattern distribution map (axial view) for the classification between MCIc and MCInc. Voxel-based pattern distribution (normalized

to a range between 0 and 1) is expressed according to the color scale (threshold = 35%) and superimposed on a standard stereotactic brain for spatial localization.

to a range between 0 and 1) is expressed according to the color
scales.

Voxels influencing the classification of AD with respect to
CN (Figure 10) are localized in the temporal pole, superior
temporal cortex, medial temporal cortex including hippocampus
and entorhinal cortex, amygdala, thalamus, putamen, caudate,
insular cortex, gyrus rectus, lateral orbitofrontal cortex, inferior
frontal cortex, superior frontal cortex, anterior cingulate cortex,
precuneus, and in the posterior cerebellar lobule.

Considering the comparison between MCIc and CN
individuals (Figure 11), the major part of voxel-based pattern
distribution was similar to the one previously found in AD.

Finally, in the direct comparisons between the two MCI
groups (Figure 12) we detected only voxels influencing
classification of the MCIc with respect to MCInc. In other words,
there were no anatomical changes in the MCInc’s brain useful to
increase the accuracy of classification. Overall, the major part of
voxel-based pattern distribution was similar to the one detected
in the previous MCIc vs. CN contrast.

Discussion and Conclusions

The localization and spatial extent of the anatomical features
identified in our study are in line with previous research showing
the precedence of pathologic changes in the temporal and
parietal cortex (Braak and Braak, 1991; Schroeter et al., 2009).
In fact, a recent neuroimaging meta-analysis (Schroeter et al.,
2009) aimed at characterizing the prototypical neural substrates

of AD and its prodromal stage amnestic MCI reported the
presence of:

(a) Reduction of glucose utilization and perfusion in the inferior
parietal lobules and the posterior cingulate cortex and
precuneus; hypometabolism was detected in the left anterior
superior insula; whereas gray matter atrophy was found
in the left temporal pole/anterior superior temporal sulcus,
right amygdala, and gyrus rectus when 525 MCI patients
were compared with 1097 healthy controls.

(b) Reductions in glucose utilization and perfusion coincided
in the inferior parietal lobules, posterior superior temporal
sulcus, precuneus, posterior cingulate cortex, anteriormedial
frontal cortex, anterior cingulate gyrus and right inferior
temporal sulcus; hypometabolism was in the right frontal
pole, left posterior middle frontal gyrus and left hippocampal
head; whereas gray matter atrophy was found in the
both amygdalae, both anterior hippocampal formations,
entorhinal areas, medial thalamus, posterior insula, and left
middle temporal gyrus/superior temporal sulcus when 826
AD patients were compared with 1097 healthy controls.

The only brain region revealed by our pattern recognition
analysis not typically related to AD-like atrophy was the
cerebellum. The cerebellum is a region generally rather neglected
in AD research. Atrophy of this region has been sparsely
reported in neuroimaging studies (Thomann et al., 2008a;
Nigro et al., 2014), although there is considerable number of
histo-pathological studies that demonstrated the presence of
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degenerative changes (Li et al., 1999; Wegiel et al., 2000; Wang
et al., 2002). These alterations mainly comprise reduced Purkinje
cell density, atrophy of the molecular and granular cell layer as
well as a large number of amyloid plaques in the cerebellar cortex
of AD compared to controls. Moreover the fact that we detected
only anatomical changes in the posterior lobule of the cerebellum
corroborated our findings, since cognitive performance in AD
patients was found to be significantly correlated with volumes of
posterior cerebellar lobes (Thomann et al., 2008b).

The development of computer-based automatic methods for
the accurate classification of patients in early phase of AD from
imaging data has attracted strong interest from the clinical
community in the last few years, since its possible critical impact
on clinical management and practice (i.e., identification of new
biomarkers). Many of these classification methods are based on
SVM, a set of algorithms that uses supervised learning of pattern
recognition in a training set to build a classifier able to predict
the category to which a new example belongs. One of the most
important challenging in this field of study is to define automated
methods to discriminate MCI patients progressing later to AD
from patients who will not (Schroeter et al., 2009). For this
reason, this study was aimed at assessing the powerful of machine
learning methods in discriminating MCI at a risk state of AD.

In our work we used nested CV to measure the performance
of our classifier. Nested CV avoids optimistically biased estimates
of performance that may arise from the use of the same
CV for parameter estimation and performance evaluation.
Specifically, when model parameters are estimated by means
of the performance evaluation criterion, then these estimates
depend on (1) improvements in generalization performance and
(2) statistical features of the particular dataset on which the
performance are evaluated. This may result in under-estimates of
the CV error. Moreover, in ordinary CV, parameter estimation
is performed prior to model building, which could lead to an
optimistic evaluation of the performance of the classifier. On
the other side, in nested CV parameter estimation is performed
simultaneously to performance evaluation (Cawley and Talbot,
2010).

Performances of our classification algorithm evaluated by
nested 20-fold CVwere 0.76 for AD vs. CN, 0.72 forMCIc vs. CN,
and 0.66 for MCIc vs. MCInc. In their published study, Cuingnet
et al. (2011) evaluated the performance of ten different machine
learning methods (28 algorithm configurations) by using the
same group of ADNI subjects employed in our work, splitting
datasets in two equal sample groups and using one group to
estimate the optimal value of hyperparameters and the other
group to evaluate the performance of the classifier. Performances
reached by our algorithm for the three classifications (AD vs.
CN, MCIc vs. CN, and MCIc vs. MCInc) are better than
27/28 algorithm configurations, since 27 algorithms have a
Balanced Accuracy lower than 0.66 for the MCIc vs. MCInc
comparison.

The use of our classifier is limited to the early diagnosis of
AD. Notwithstanding the vast majority of brain regions identified
by our multivariate pattern recognition analysis have been
also described to be involved in neurodegenerative processes
underlying other dementia disorders (e.g., Fronto-Temporal

Lobar Degeneration), machine learning has been also found
accurate when applied toMR images for the differential diagnosis
of AD (e.g., Klöppel et al., 2008). The clinical use of such a
machine learning approach (early and differential diagnosis of
AD) should require the training of a multicategory classifier
(Beom Choi et al., 2014) on MR images from CN and different
dementia patients (e.g., MCIc, MCInc, AD, FTD).

The main innovative result of our work was the extraction of
MR-related biomarkers for the early diagnosis of AD by means
of machine learning. We assessed the relevance of each brain
voxel with respect to the classification analysis, thus allowing
regions critically involved in the pathophysiological mechanisms
of AD to be identified. Notably, the vast majority of brain regions
allowing to perform the best discrimination between AD and
CN, as well as between MCIc and CN, were the same regions
allowing the discrimination between the two critical forms of
MCI, i.e., MCIc and MCInc. In other words, the AD-like atrophy
patterns characterized by combined pathological changes within
the temporal cortex, hippocampus, entorhinal cortex, thalamus,
insular cortex, anterior cingulate cortex, orbitofrontal cortex, and
precuneus, allowed distinguishing clinically- and cognitively-
matched MCI patients progressing to AD from those who
will not.

In conclusion, we demonstrated that an advanced
neuroimaging approach based on machine learning is able
to accurately classify patients who will or will not develop AD
by means of structural MRI data and to extract MR-related
biomarkers of AD. Moreover, our advanced neuroimaging
study allows us to perform a challenging reflection. Due to
the similarity between AD-like atrophy patterns with those
detected in MCI who will convert in AD, we can derive that
the machine learning approach impacts on the sensitivity of
AD-related features rather than specificity. This would suggest
that the problem of how to perform diagnosis of AD at a very
early stage by MRI seems to be a matter of increasing the
MRI detectability of structural biomarkers. For this reason, both
current generationMRI systems combined with advanced images
processing algorithms and future generation MRI systems with
improved sensitivity (e.g., increased MRI resolution and better
S/N ratio) will –definitely– move MRI diagnostic role from
clinical to pre-clinical stage of AD.
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